10.3Gbps SFP+ Transceiver, Single Mode, 20km Reach AXS13-192-20

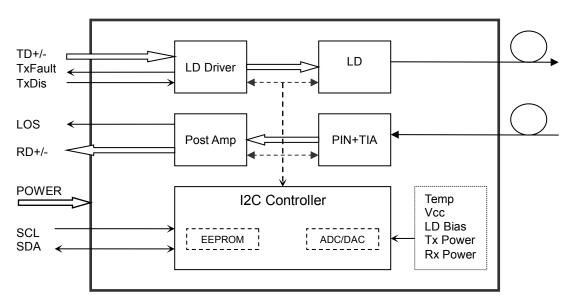
Product Features

- Supports up to 10.7Gbps bit rates
- Hot-pluggable SFP+ footprint
- 1310nm DFB laser and PIN photodiode, Up to 20km for SMF transmission
- Compliant with SFP+ MSA and SFF-8472 with duplex LC receptacle
- Compatible with RoHS
- Single +3.3V power supply
- Real Time Digital Diagnostic Monitoring
- Operating case temperature:

Standard: 0 to +70°C Industrial: -40 to +85°C

Applications

- 10Gbps Optical systems
- 10GBASE-LR at 10.3125Gbps
- 10GBASE-LW at 9.953Gbps
- LTE systems
- Other Optical links


Description

The SFP+ transceivers are high performance, cost effective modules supporting data rate of 10Gbps and 20km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

1

Transceiver functional diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard		0		+70	°C
	Extended	Tc	-20		+80	°C
	Industrial		-40		+85	°C
Power Supply Voltage		Vcc	3.135	3.30	3.465	V
Power Supply Current		Icc			350	mA
Data Rate			1.0	10.3	10.7	Gbps

Driving Your Next Generation Networks

Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Max	Unit	Notes
	Transmitter						
	Vavelength 3-192-20	λс	1270	1310	1350	nm	
Spectral Wi	dth (-20dB)	Δλ			1	nm	
Side-Mode Su	ppression Ratio	SMSR	30	-		dB	
Average C	output Power	Pout	-3.0		+2.0	dBm	1
Extinct	ion Ratio	ER	3.5			dB	
Data Input Sv	ving Differential	V _{IN}	180		850	mV	2
Input Differer	ntial Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
1 A Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
1 A Fault	Normal		0		0.8	V	
			Receiv	er			
	Vavelength 3-192-20	λс	1260		1600	nm	
Receiver	Sensitivity				-15	dBm	3
Receive	r Overload		0.5			dBm	3
LOS De-Assert		LOS _D			-16	dBm	
LOS Assert		LOSA	-30			dBm	
LOS Hysteresis			0.5			dB	
Data Output Swing Differential		V _{out}	300		900	mV	4
LOS		High	2.0		Vcc	V	
		Low			0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- PECL input, internally AC-coupled and terminated.
 Measured with a PRBS 2³¹-1 test pattern @10312Mbps, BER ≤1×10⁻¹².
- 4. Internally AC-coupled.

Driving Your Next Generation Networks

Timing and Electrical

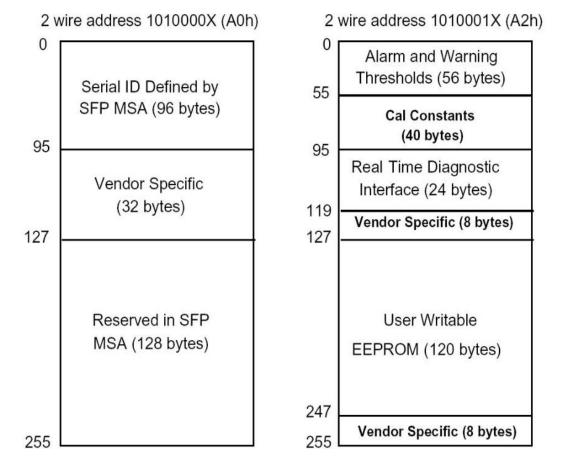
Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	рs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock		100	400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	V _L			0.8	V

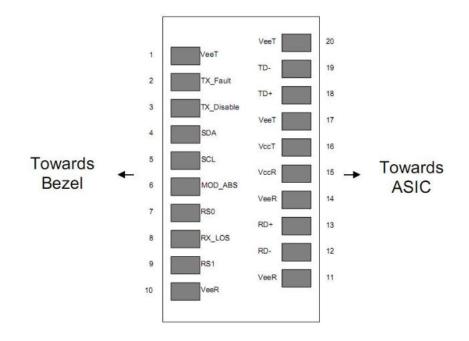
Diagnostics

Parameter	Range	Unit	Accuracy	Calibration	
	0 to +70				
Temperature	-20 to +80	°C	±3°C	Internal	
	-40 to +85				
Voltage	3.0 to 3.6	V	±3%	Internal	
Bias Current	0 to 100	mA	±10%	Internal	
TX Power	-3 to +2	dBm	±3dB	Internal	
RX Power	-20 to -1	dBm	±3dB	Internal	

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented,

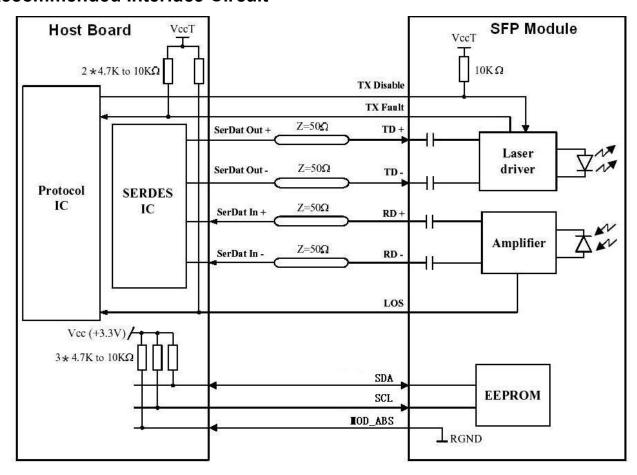

Driving Your Next Generation Networks

including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

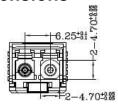
The digital diagnostic memory map specific data field defines as following.

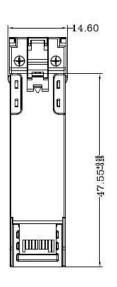
Pin Descriptions

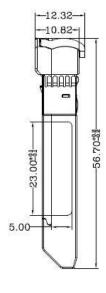
Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	SDA	SDA Serial Data Signal	3	
5	SCL	SCL Serial Clock Signal	3	
6	MOD_ABS	Module Absent. Grounded within the module	3	
7	RS0	Not Connected	3	
8	LOS	Loss of Signal	3	Note 3
9	RS1	Not Connected	3	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 4
13	RD+	Received Data Out	3	Note 4
14	V _{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 5
19	TD-	Inv. Transmit Data In	3	Note 5
20	V _{EET}	Transmitter Ground	1	

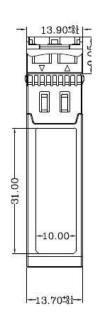

Driving Your Next Generation Networks

Notes:


Plug Seq.: Pin engagement sequence during hot plugging.


- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3) LOS is open collector output. Should be pulled up with 4.7k~10kΩ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 5) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.


Recommended Interface Circuit



Mechanical Dimensions

Ordering information

Part Number	Product Description				
AXS13-192-20	1310nm 10Gbps LC 20km 0°C~+70°C with DDM				
AXS13-192-20+	1310nm 10Gbps LC 20km -40°C~+85°C with DDM				

Revision History

Revision	Initiated	Approved	content	Release Date
Ver1.0	Jacky	Nicky	Released	Dec/2016
Ver1.1	QR.HUANG	Nicky	Released	May/2017

Further Information

For further information, please contact ventas@mediatechperu.com

Tel: 511+ 4702141

Web: https://www.mediatechperu.com